Acres in a circle $=\left(\right.$ radius $\left.^{2} \times п\right) \div 43560$
Radius needed for given acres $=\sqrt{ }$ Acres $\times 43560$

Circumference $=$ Radius $\times 2 \times \pi$ or Diameter $\times \pi$
Feet per Minute (FPM) (last tower @ 100\%) = (Distance traveled x60) \div Time (in seconds)

Hours per revolution (Hrs/Rev) $=$ Circumference $\div($ FPM $\times 60)$
GPM per acre (GPM/A) $=$ GPM \div Acres Irrigated
Inches per day (In/Day) $=$ GPM/A $\times .053$
Inches per revolution (In/Rev) $=(\mathrm{In} /$ Day $\times \mathrm{Hrs} / \mathrm{Rev}) \div 24$
$\mathrm{Pi}(п)=3.14159$
1 Acre $=43560 \mathrm{ft}^{2}$
1 Acre Foot of water $=325,851$ Gallons

1 Acre Inch of Water = 27,154.29 gallons
1 psi $=2.307$ Head Feet
1 Foot of Head $=.4335 \mathrm{psi}$
$0.30 \mathrm{~m} / \mathrm{s}=1 \mathrm{ft} / \mathrm{s} \quad 1 \mathrm{~m} / \mathrm{s}=3.28 \mathrm{ft} / \mathrm{s}$
1 inch $=24.4 \mathrm{~mm} \quad 1 \mathrm{~mm}=.03937$ inches
Volume
Cubic feet, gallons, acre-feet, acre-inches
Conversions

- $1 \mathrm{ft}^{3}=7.480 \mathrm{gal}$
- $1 \mathrm{ac}-\mathrm{ft}=43,560 \mathrm{ft}^{3}=325,851 \mathrm{gal}$
- $1 \mathrm{ac}-\mathrm{in}=3,630 \mathrm{ft}^{3}=27,150 \mathrm{gal}$
- 1 acre $=43,560 \mathrm{ft}^{2}$

Discharge

Cubic feet per second, gallons per minute, millions of gallons per day
Conversions

- 1 cfs $=448.8 \mathrm{gpm}$
- $1 \mathrm{mgd}=1.547 \mathrm{cfs}=694.4 \mathrm{gpm}$
- $0.002228 \mathrm{cfs}=1 \mathrm{gpm}$
$\underline{\text { Volume }=\text { Discharge } \times \text { Time }}$

Pressure

Pressure is the normal force that a fluid exerts on a solid boundary, per unit surface area. Common units of pressure are pounds per square inch (psi) and pounds per square foot (psf).

- $1 \mathrm{psi}=144 \mathrm{psf}$
- atmospheric pressure is approximately 14 psi

Pressure can be reported in two different ways.

1) Absolute pressure: relative to absolute zero (perfect vacuum)
2) Gage pressure: relative to atmospheric pressure

In hydraulic engineering, pressures are always stated as gage pressures unless otherwise noted.

Hydrostatics

In a static liquid, pressure decreases with increasing elevation. The pressure difference between any two points can be calculated from the elevation difference and the liquid's specific weight (weight per unit volume).

- Specific weight of water $=62.4 \mathrm{lb} / \mathrm{ft}^{3}=8.34 \mathrm{lb} / \mathrm{gal}$

Hydrostatic Law for Liquids (General)

Pressure difference $=-($ Specific weight of fluid $) \times($ Elevation difference $)$
Hydrostatic Law for Water
Pressure difference in psi $=-0.4333 \times$ (Elevation difference in feet)

